Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 719
Filtrar
1.
Gynecol Endocrinol ; 40(1): 2351525, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38726683

RESUMO

OBJECTIVE: Stable luteal cell function is an important prerequisite for reproductive ability and embryonic development. However, luteal insufficiency seriously harms couples who have the desire to have a pregnancy, and the most important thing is that there is no complete solution. In addition, Vaspin has been shown to have regulatory effects on luteal cells, but the complex mechanisms involved have not been fully elucidated. Therefore, this study aimed to explore the effect of Vaspin on rat luteal cells and its mechanism. METHODS: Granulosa lutein cells separated from the ovary of female rats were incubated for 24h with gradient concentrations of Vaspin, and granulosa lutein cells incubated with 0.5% bovine serum albumin were used as controls. The proliferation, apoptosis, angiogenesis, progesterone (P4) and estradiol (E2) were detected by CCK-8, Anneixn-FITC/PI staining, angiogenesis experiment and ELISA. Western blot was applied to observe the expression levels of proteins related to cell proliferation, apoptosis, angiogenesis and MEK/MAPK signaling pathway. RESULTS: Compared with the Control group, Vaspin could significantly up-regulate the proliferation of granulosa lutein cells and reduce the apoptosis. Moreover, Vaspin promoted the angiogenesis of granulosa lutein cells and the production of P4 and E2 in a concentration-dependent manner. Furthermore, Vaspin up-regulated the CyclinD1, CyclinB1, Bcl2, VEGFA and FGF-2 expression in granulosa lutein cells, and down-regulated the level of Bax. Also, Vaspin increased the p-MEK1 and p-p38 levels. CONCLUSION: Vaspin can up-regulate the proliferation and steroidogenesis of rat luteal cells and reduce apoptosis, which may be related to the influence of MEK/MAPK activity.


Assuntos
Apoptose , Proliferação de Células , Células Lúteas , Progesterona , Serpinas , Animais , Feminino , Proliferação de Células/efeitos dos fármacos , Serpinas/metabolismo , Serpinas/farmacologia , Ratos , Células Lúteas/efeitos dos fármacos , Células Lúteas/metabolismo , Apoptose/efeitos dos fármacos , Progesterona/farmacologia , Estradiol/farmacologia , Células Cultivadas , Ratos Sprague-Dawley , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos
2.
J Biomol Struct Dyn ; 42(2): 918-934, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37114408

RESUMO

Kallistatin (KL) is a member of the serine proteinase inhibitor (serpin) family regulating oxidative stress, vascular relaxation, inflammation, angiogenesis, cell proliferation, and invasion. The heparin-binding site of Kallistatin has an important role in the interaction with LRP6 leading to the blockade of the Wnt signaling pathway. In this study, we aimed to explore the structural basis of the Kallistatin-LRP6E1E4 complex using in silico approaches and evaluating the anti-proliferative, apoptotic, and cell cycle arrest activities of Kallistatin in colon cancer lines. The molecular docking showed Kallistatin could bind to the LRP6E3E4 much stronger than LRP6E1E2. The Kallistatin-LRP6E1E2 and Kallistatin-LRP6E3E4 complexes were stable during Molecular Dynamics (MD) simulation. The Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) showed that the Kallistatin-LRP6E3E4 has a higher binding affinity compared to Kallistatin-LRP6E1E2. Kallistatin induced higher cytotoxicity and apoptosis in HCT116 compared to the SW480 cell line. This protein-induced cell-cycle arrest in both cell lines at the G1 phase. The B-catenin, cyclin D1, and c-Myc expression levels were decreased in response to treatment with Kallistatin in both cell lines while the LRP6 expression level was decreased in the HCT116 cell line. Kallistatin has a greater effect on the HCT116 cell line compared to the SW480 cell line. Kallistatin can be used as a cytotoxic and apoptotic-inducing agent in colorectal cancer cell lines.


Assuntos
Neoplasias do Colo , Serpinas , Humanos , Serpinas/metabolismo , Serpinas/farmacologia , Simulação de Acoplamento Molecular , Via de Sinalização Wnt , Apoptose , Proliferação de Células , Linhagem Celular Tumoral , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade
3.
Inflamm Bowel Dis ; 30(2): 257-272, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37454278

RESUMO

BACKGROUND: Various extracellular matrix (ECM) reshaping events are involved in inflammatory bowel disease (IBD). LAMB3 is a vital subunit of laminin-332, an important ECM component. Data on the biological function of LAMB3 in intestinal inflammation are lacking. Our aim is to discuss the effect of LAMB3 in IBD. METHODS: LAMB3 expression was assessed in cultured intestinal epithelial cells, inflamed mucosal tissues of patients and mouse colitis models. RNA sequencing, quantitative real-time polymerase chain reaction and Western blotting were used to detect the LAMB3 expression distribution and potential downstream target genes. Dual-luciferase assays and chromatin immunoprecipitation-quantitative polymerase chain reaction were used to determine whether P65 could transcriptionally activate LAMB3 under tumor necrosis factor α stimulation. RESULTS: LAMB3 expression was increased in inflammatory states in intestinal epithelial cells and colonoids and was associated with adverse clinical outcomes in Crohn's disease. Knockdown of LAMB3 inhibited the expression of proinflammatory cytokines. Mechanistically, LAMB3 expression was directly transcriptionally activated by P65 and was inhibited by nuclear factor kappa B inhibitors under tumor necrosis factor α stimulation. Furthermore, RNA sequencing and replenishment experiments revealed that LAMB3 upregulated SERPINA3 to promote intestinal inflammation via the integrin α3ß1/FAK pathway. CONCLUSION: We propose that LAMB3 could serve as a potential therapeutic target of IBD and a predictor of intestinal stenosis of Crohn's disease. Our findings demonstrate the important role of ECM in the progression of IBD and offer an experimental basis for the treatment and prognosis of IBD.


Assuntos
Doença de Crohn , Doenças Inflamatórias Intestinais , Serpinas , Animais , Humanos , Camundongos , Doença de Crohn/patologia , Inflamação/patologia , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/patologia , Serpinas/metabolismo , Serpinas/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
4.
Ocul Surf ; 32: 1-12, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38103731

RESUMO

PURPOSE: The study investigated effectiveness of a novel PEDF peptide mimetic to alleviate dry eye-like pathologies in a Type I diabetic mouse model established using streptozotocin. METHODS: Mice were treated topically for 3-6 weeks with Ppx (a 17-mer PEDF mimetic) 2x/day or vehicle. Corneal sensitivity, tear film, epithelial and endothelial injury were measured using Cochet-Bonnet esthesiometer, phenol red cotton thread wetting, fluorescein sodium staining, and ZO1 expression, respectively. Inflammatory and parasympathetic nerve markers and activation of the MAPK/JNK pathways in the lacrimal glands were measured. RESULTS: Diabetic mice exhibited features of dry eye including reduced corneal sensation and tear secretion and increased corneal epithelium injury, nerve degeneration, and edema. Ppx reversed these pathologies and restored ZO1 expression and morphological integrity of the endothelium. Upregulation of IL-1ß and TNFα, increased activation of P-38, JNK, and ERK, and higher levels of M3ACHR in diabetic lacrimal glands were also reversed by the peptide treatment. CONCLUSION: The study demonstrates that topical application of a synthetic PEDF mimetic effectively alleviates diabetes-induced dry eye by restoring corneal sensitivity, tear secretion, and endothelial barrier and lacrimal gland function. These findings have significant implications for the potential treatment of dry eye using a cost-effective and reproducible approach with minimal invasiveness and no obvious side effects.


Assuntos
Córnea , Diabetes Mellitus Experimental , Síndromes do Olho Seco , Proteínas do Olho , Aparelho Lacrimal , Fatores de Crescimento Neural , Serpinas , Lágrimas , Animais , Camundongos , Proteínas do Olho/metabolismo , Síndromes do Olho Seco/tratamento farmacológico , Síndromes do Olho Seco/patologia , Serpinas/farmacologia , Serpinas/uso terapêutico , Serpinas/administração & dosagem , Fatores de Crescimento Neural/farmacologia , Fatores de Crescimento Neural/uso terapêutico , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Lágrimas/metabolismo , Lágrimas/efeitos dos fármacos , Córnea/efeitos dos fármacos , Córnea/patologia , Córnea/metabolismo , Aparelho Lacrimal/efeitos dos fármacos , Aparelho Lacrimal/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Masculino
5.
Int J Mol Sci ; 24(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37958726

RESUMO

In proteinuric renal diseases, the serine protease (SP) plasmin activates the epithelial sodium channel (ENaC) by cleaving its γ subunit. We previously demonstrated that a high-salt (HS) diet provoked hypertension and proteinuria in Dahl salt-sensitive (DS) rats, accompanied by γENaC activation, which were attenuated by camostat mesilate (CM), an SP inhibitor. However, the effects of CM on plasmin activity in DS rats remain unclear. In this study, we investigated the effects of CM on plasmin activity, ENaC activation, and podocyte injury in DS rats. The DS rats were divided into the control diet, HS diet (8.0% NaCl), and HS+CM diet (0.1% CM) groups. After weekly blood pressure measurement and 24-h urine collection, the rats were sacrificed at 5 weeks. The HS group exhibited hypertension, massive proteinuria, increased urinary plasmin, and γENaC activation; CM treatment suppressed these changes. CM prevented plasmin(ogen) attachment to podocytes and mitigated podocyte injury by reducing the number of apoptotic glomerular cells, inhibiting protease-activated receptor-1 activation, and suppressing inflammatory and fibrotic cytokine expression. Our findings highlight the detrimental role of urinary plasmin in the pathogenesis of salt-sensitive hypertension and glomerular injury. Targeting plasmin with SP inhibitors, such as CM, may be a promising therapeutic approach for these conditions.


Assuntos
Hipertensão , Podócitos , Serpinas , Ratos , Animais , Inibidores de Serina Proteinase/farmacologia , Inibidores de Serina Proteinase/uso terapêutico , Fibrinolisina , Podócitos/metabolismo , Ratos Endogâmicos Dahl , Serpinas/farmacologia , Cloreto de Sódio na Dieta/farmacologia , Proteinúria/patologia , Pressão Sanguínea , Rim/metabolismo
6.
J Stroke Cerebrovasc Dis ; 32(12): 107403, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37804782

RESUMO

OBJECTIVES: Protein Z (PZ) /Protein Z-dependent protease inhibitor (ZPI) (PZ/ZPI) system is a new anticoagulant system discovered in recent years, which plays an important role in many diseases. We aimed to compare the plasma PZ/ZPI levels of acute ischemic stroke (AIS) patients and non-stroke control participants and the role of PZ/ZPI in the development of stroke was preliminarily analyzed. MATERIALS AND METHODS: Enzyme linked immunosorbent assay (ELISA) was used to detect and compare plasma PZ levels of 86 patients with acute AIS and 85 non-stroke control patients. Multivariable Logistic regression was used to analyze whether PZ was an independent risk factor for AIS. RESULTS: In the present study, plasma PZ is closely related to inflammatory response, coagulation process and platelet activation, and may participate in the development of AIS by inducing inflammatory responses and interfering with the coagulation process. CONCLUSIONS: Our results suggested that plasma PZ level is one of the independent risk factors of AIS, and plasma ZPI was closely related to coagulation and platelet parameter and may play a role in the coagulation process during AIS.


Assuntos
AVC Isquêmico , Serpinas , Humanos , Inibidores de Proteases/metabolismo , Serpinas/metabolismo , Serpinas/farmacologia , AVC Isquêmico/diagnóstico , Estudos Prospectivos , Proteínas Sanguíneas/metabolismo
7.
EMBO Mol Med ; 15(9): e17376, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37534622

RESUMO

SARS-CoV-2 acute respiratory distress syndrome (ARDS) induces uncontrolled lung inflammation and coagulopathy with high mortality. Anti-viral drugs and monoclonal antibodies reduce early COVID-19 severity, but treatments for late-stage immuno-thrombotic syndromes and long COVID are limited. Serine protease inhibitors (SERPINS) regulate activated proteases. The myxoma virus-derived Serp-1 protein is a secreted immunomodulatory serpin that targets activated thrombotic, thrombolytic, and complement proteases as a self-defense strategy to combat clearance. Serp-1 is effective in multiple animal models of inflammatory lung disease and vasculitis. Here, we describe systemic treatment with purified PEGylated Serp-1 as a therapy for immuno-coagulopathic complications during ARDS. Treatment with PEGSerp-1 in two mouse-adapted SARS-CoV-2 models in C57Bl/6 and BALB/c mice reduced lung and heart inflammation, with improved outcomes. PEGSerp-1 significantly reduced M1 macrophages in the lung and heart by modifying urokinase-type plasminogen activator receptor (uPAR), thrombotic proteases, and complement membrane attack complex (MAC). Sequential changes in gene expression for uPAR and serpins (complement and plasminogen inhibitors) were observed. PEGSerp-1 is a highly effective immune-modulator with therapeutic potential for severe viral ARDS, immuno-coagulopathic responses, and Long COVID.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Serpinas , Camundongos , Animais , Humanos , Serpinas/uso terapêutico , Serpinas/metabolismo , Serpinas/farmacologia , SARS-CoV-2 , Síndrome de COVID-19 Pós-Aguda , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Modelos Animais de Doenças , Peptídeo Hidrolases
8.
J Virol ; 97(6): e0029423, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37272794

RESUMO

Serpins are a superfamily of proteins that regulate a variety of physiological processes by irreversibly inhibiting the enzymatic activity of different serine proteases. For example, Serpin Family B Member 8 (Serpin B8, also known as PI8 and CAP2) binds to and inhibits the proprotein convertase furin. Like many other viral pathogens, human immunodeficiency virus type 1 (HIV-1) exploits furin for the proteolytic activation of its envelope glycoprotein (Env). Since the furin inhibitor Serpin B8 is expressed in primary target cells of HIV-1 and induced under inflammatory conditions, we hypothesized that it might interfere with HIV-1 Env maturation and decrease infectivity of newly produced virions. Indeed, recombinant Serpin B8 reduced furin-mediated cleavage of an HIV-1 Env reporter substrate in vitro. However, Serpin B8 did not affect Env maturation or reduce HIV-1 particle infectivity when expressed in HIV-1-producing cells. Immunofluorescence imaging, dimerization assays and in silico sequence analyses revealed that Serpin B8 failed to inhibit intracellular furin since both proteins localized to different subcellular compartments. We therefore aimed at rendering Serpin B8 active against HIV-1 by relocalizing it to furin-containing secretory compartments. Indeed, the addition of a heterologous signal peptide conferred potent anti-HIV-1 activity to Serpin B8 and significantly decreased infectivity of newly produced viral particles. Thus, our findings demonstrate that subcellular relocalization of a cellular protease inhibitor can result in efficient inhibition of infectious HIV-1 production. IMPORTANCE Many cellular proteases serve as dependency factors during viral infection and are hijacked by viruses for the maturation of their own (glyco)proteins. Consequently, inhibition of these cellular proteases may represent a means to inhibit the spread of viral infection. For example, several studies have investigated the serine protease furin as a potential therapeutic target since this protease cleaves and activates several viral envelope proteins, including HIV-1 Env. Besides the development of small molecule inhibitors, cell-intrinsic protease inhibitors may also be exploited to advance current antiviral treatment approaches. Here, we show that Serpin B8, an endogenous furin inhibitor, can inhibit HIV-1 Env maturation and efficiently reduce infectious HIV-1 production when rerouted to the secretory pathway. The results of our study not only provide important insights into the biology of Serpins, but also show how protein engineering of an endogenous furin inhibitor can render it active against HIV-1.


Assuntos
Furina , HIV-1 , Serpinas , Humanos , Linhagem Celular , Produtos do Gene env do Vírus da Imunodeficiência Humana , Furina/metabolismo , HIV-1/fisiologia , Serpinas/química , Serpinas/metabolismo , Serpinas/farmacologia , Replicação Viral
9.
Protein J ; 42(4): 305-315, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37149510

RESUMO

The majority of the clotting factors involved in blood coagulation pathways are serine proteases and thrombin is one of the key serine proteases involved in blood clotting. Many synthetic and chemical drugs targeting these proteases as therapeutics are known. However, they are associated with serious side effects such as bleeding, haemorrhage, edema etc. Serine protease inhibitors from plants have been suggested as one of the potential anticoagulant molecules against thrombosis. In the present work, a direct thrombin inhibitor from Moringa oleifera was isolated, purified and characterized. The homogeneity of the inhibitor is confirmed on native- PAGE. The purified inhibitor (5 µg) showed 63% thrombin inhibition at pH 7.2 at 37 °C. The IC50 value of the isolated inhibitor was determined as 4.23 µg. The inhibitor on SDS-PAGE appeared as a single protein-stained band corresponding to 50 kDa thereby indicating its molecular weight as 50 kDa. Purified thrombin inhibitor (5 µg) showed 12% inhibition of trypsin, and 17% inhibition of chymotrypsin. This suggests more specificity of purified inhibitor towards thrombin. The isolated inhibitor showed a non-competitive mode of inhibition against thrombin as determined by the Dixon plot. The inhibition constant (Ki) was calculated as 4.35 × 10-7 M. The present work reports for the first time a direct thrombin inhibitor from M. oleifera which may be further explored as an antithrombotic drug.


Assuntos
Moringa oleifera , Serpinas , Trombina , Serpinas/farmacologia , Serpinas/metabolismo , Moringa oleifera/metabolismo , Coagulação Sanguínea , Antitrombinas/farmacologia
10.
J Pharm Pharmacol ; 75(6): 746-757, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37104852

RESUMO

OBJECTIVES: Cardiovascular diseases are the leading cause of death worldwide, with patients having limited options for treatment. Pigment epithelium-derived factor (PEDF) is an endogenous multifunctional protein with several mechanisms of action. Recently, PEDF has emerged as a potential cardioprotective agent in response to myocardial infarction. However, PEDF is also associated with pro-apoptotic effects, complicating its role in cardioprotection. This review summarises and compares knowledge of PEDF's activity in cardiomyocytes with other cell types and draws links between them. Following this, the review offers a novel perspective of PEDF's therapeutic potential and recommends future directions to understand the clinical potential of PEDF better. KEY FINDINGS: PEDF's mechanisms as a pro-apoptotic and pro-survival protein are not well understood, despite PEDF's implication in several physiological and pathological activities. However, recent evidence suggests that PEDF may have significant cardioprotective properties mediated by key regulators dependent on cell type and context. CONCLUSIONS: While PEDF's cardioprotective activity shares some key regulators with its apoptotic activity, cellular context and molecular features likely allow manipulation of PEDF's cellular activity, highlighting the importance of further investigation into its activities and its potential to be applied as a therapeutic to mitigate damage from a range of cardiac pathologies.


Assuntos
Miócitos Cardíacos , Serpinas , Humanos , Miócitos Cardíacos/metabolismo , Serpinas/farmacologia , Serpinas/fisiologia , Proteínas do Olho/farmacologia , Proteínas do Olho/fisiologia , Fatores de Crescimento Neural/farmacologia , Fatores de Crescimento Neural/fisiologia
11.
Am J Respir Cell Mol Biol ; 69(1): 87-98, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37094101

RESUMO

Pulmonary hypertension (PH) is a disease characterized by advanced pulmonary vasculature remodeling that is thought to be curable only through lung transplantation. The application of angiogenic hepatocyte growth factor (HGF) is reported to be protective in PH through its anti-vascular remodeling effect, but excessive HGF-mediated immature neovascularization is not conducive to the restoration of pulmonary perfusion because of apparent vascular leakage. As a canonical antiangiogenic molecule, pigment epithelium-derived factor (PEDF) inhibits angiogenesis and reduces vascular permeability in a variety of diseases. However, the effect of PEDF on HGF-based PH treatment remains to be determined. In this study, monocrotaline-induced PH rats and endothelial cells isolated from rat and human PH lung tissues were used. We assessed PH progression, right cardiac function, and pulmonary perfusion in HGF- and/or PEDF-treated rats with PH. Additionally, the receptor and mechanism responsible for the role of PEDF in HGF-based PH therapy were investigated. In this study, we found that HGF and PEDF jointly prevent PH development and improve right cardiac function in rats with PH. Moreover, PEDF delivery increases the pulmonary perfusion in PH lungs and inhibits immature angiogenesis and vascular endothelial (VE)-cadherin junction disintegration induced by HGF without affecting the therapeutic inhibition of pulmonary vascular remodeling by HGF. Mechanistically, PEDF targets VE growth factor receptor 2 and suppresses its phosphorylation at Y951 and Y1175 but not Y1214. Finally, VE growth factor receptor 2/VE protein tyrosine phosphatase/VE-cadherin complex formation and Akt and Erk1/2 inactivation were observed in rat and human PH lung endothelial cells. Collectively, our data indicate that PEDF additively enhances the efficacy of HGF against PH, which may provide new insights into treatment strategies for clinical PH.


Assuntos
Hipertensão Pulmonar , Serpinas , Ratos , Humanos , Animais , Fator de Crescimento de Hepatócito/efeitos adversos , Fator de Crescimento de Hepatócito/metabolismo , Hipertensão Pulmonar/metabolismo , Células Endoteliais/metabolismo , Proteínas do Olho/farmacologia , Proteínas do Olho/metabolismo , Serpinas/farmacologia , Serpinas/metabolismo
12.
Methods Mol Biol ; 2597: 89-104, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36374416

RESUMO

The mechanisms underlying nervous system injury, such as spinal cord injury (SCI), traumatic brain injury (TBI), and peripheral nerve injury are complex and not well understood. Following acute tissue damage and cell death, inflammatory processes cause ongoing damage. Many factors regulate this inflammation, including factors that modulate chemokine expression. Serine proteases, including those of the thrombotic and thrombolytic pathways (e.g., thrombin, tPA, uPA) are upregulated during nervous system damage and can modulate the release and bioavailability of many chemokines. Virus-derived immunomodulators, such as Serp-1, a serine protease inhibitor (serpin), have protective effects by reducing inflammation and tissue damage. However, the precise mechanisms of Serp-1 neuroprotection are still being studied. Compartmentalized in vitro neuron culture systems, such as the Campenot trichamber, are useful for such mechanistic studies. This chapter provides a protocol for assembling and culturing rodent embryonic superior cervical ganglion (SCG) and dorsal root ganglion (DRG) neurons in Campenot trichambers, as well as instructive examples of the types of experiments enabled by these methods.


Assuntos
Serpinas , Humanos , Serpinas/farmacologia , Serpinas/metabolismo , Inflamação/metabolismo , Inibidores de Serina Proteinase , Fibrinolíticos , Serina Endopeptidases/metabolismo , Gânglios Espinais/metabolismo
13.
J Biomol Struct Dyn ; 41(10): 4575-4591, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35510592

RESUMO

Pigment epithelium-derived factor (PEDF) is a member of the serine proteinase inhibitor (serpin) with antiangiogenic, anti-tumorigenic, antioxidant, anti-atherosclerosis, antithrombotic, anti-inflammatory, and neuroprotective properties. The PEDF can bind to low-density lipoprotein receptor-related protein 6 (LRP6), laminin (LR), vascular endothelial growth factor receptor 1 (VEGFR1), vascular endothelial growth factor receptor 2 (VEGFR2), and ATP synthase ß-subunit receptors. In this study, we aimed to investigate the structural basis of the interaction between PEDF and its receptors using bioinformatics approaches to identify the critical amino acids for designing anticancer peptides. The human ATP synthase ß-subunit was predicted by homology modeling. The molecular docking, molecular dynamics (MD) simulation, and Molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) were used to study this protein-receptor complex. The molecular docking showed PEDF could bind to the Laminin and VEGFR2 much stronger than ATP synthase ß-subunit, VEGFR1, and LRP6. The PEDF could effectively interact with various receptors during the simulation. The N-terminal of PEDF has an important role in the interaction with the receptors. The MM/PBSA showed the electrostatic (ΔEElec) and van der Waals interactions (ΔEVdW) contributed positively to the binding process of the complexes. The critical amino acids in the binding interaction of PEDF to its receptors in the MD simulation were determined. The interaction mode of 34-mer PEDF to laminin, VEGFR2, and LRP6 were different from VEGFR1, ATP synthase ß-subunit. The 34-mer PEDF has an important role in the interaction with different receptors and these critical amino acids can be used for designing peptides for future therapeutic aims.Communicated by Ramaswamy H. Sarma.


Assuntos
Neoplasias , Serpinas , Humanos , Serpinas/metabolismo , Serpinas/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Simulação de Acoplamento Molecular , Laminina , Peptídeos , Aminoácidos , Trifosfato de Adenosina
14.
J Nanobiotechnology ; 20(1): 474, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335351

RESUMO

Chronic metabolic diseases such as diabetes are characterized by delayed wound healing and a dysregulation of the inflammatory phase of wound repair. Our study focuses on changes in the payload of extracellular vesicles (EVs) communicating between immune cells and stromal cells in the wound bed, which regulate the rate of wound closure. Adoptive transfer of EVs from genetically defined mouse models are used here to demonstrate a functional and molecular basis for differences in the pro-reparative biological activity of diabetic (db/db) vs. wildtype EVs in wound healing. We identify several members of the Serpin family of serine protease inhibitors that are absent in db/db EVs, then we overexpress Serpin A1, F2 and G1 in EVs to evaluate their effect on wound healing in db/db mice. Serpins have an important role in regulating levels of elastase, plasmin and complement factors that coordinate immune cell signaling in full thickness wounds in a diabetic model. Here, we establish a novel therapeutic approach by engineering the payload of EVs based on proteomic analysis. Serpin-loaded EVs were used to rescue the Serpin deficiency identified by proteomics and promote wound healing in db/db mice, as well as evaluated how EVs affected extracellular matrix remodeling and the resolution of tissue injury. Therefore, we propose that the identification of EV payloads that are downregulated in diabetic wounds can be systematically analyzed for their functional activity and potential as a therapeutic, based on whether their re-expression in engineered EVs restores normal kinetics of tissue repair in chronic wounds.


Assuntos
Diabetes Mellitus , Vesículas Extracelulares , Serpinas , Camundongos , Animais , Serpinas/farmacologia , Proteômica , Cicatrização , Modelos Animais de Doenças
15.
Int J Mol Sci ; 23(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36293378

RESUMO

The SARS-CoV-2 virus can utilize host cell proteases to facilitate cell entry, whereby the Spike (S) protein is cleaved at two specific sites to enable membrane fusion. Furin, transmembrane protease serine 2 (TMPRSS2), and cathepsin L (CatL) are the major proteases implicated, and are thus targets for anti-viral therapy. The human serpin (serine protease inhibitor) alpha-1 antitrypsin (A1AT) shows inhibitory activity for TMPRSS2, and has previously been found to suppress cell infection with SARS-CoV-2. Here, we have generated modified serpin inhibitors with increased specificity for these cellular proteases. Using SerpinB3 (SCCA-1), a cross-class inhibitor of CatL, as a scaffold, we have designed and produced reactive centre loop (RCL) variants to more specifically target both furin and TMPRSS2. Two further variants were generated by substituting the RCL P7-P1 with the spike protein S1/S2 cleavage site from either SARS-CoV-2 alpha or delta (P681R) sequences. Altered inhibitory specificity of purified recombinant proteins was verified in protease assays, with attenuated CatL inhibition and gain of furin or TMPRSS2 inhibition, as predicted, and modified serpins were shown to block S protein cleavage in vitro. Furthermore, the serpin variants were able to inhibit S-pseudoparticle entry into A549-ACE2-TMPRSS2 cells and suppress SARS-CoV-2 replication in Vero E6 cells expressing TMPRSS2. The construct designed to inhibit TMPRSS2 (B3-TMP) was most potent. It was more effective than A1AT for TMPRSS2 enzyme inhibition (with an eighteen-fold improvement in the second order inhibition rate constant) and for blocking SARS-CoV-2 viral replication. These findings advance the potential for serpin RCL mutagenesis to generate new inhibitors, and may lead to novel anti-viral biological molecules.


Assuntos
Tratamento Farmacológico da COVID-19 , Serpinas , Humanos , SARS-CoV-2 , Furina/genética , Furina/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Serpinas/genética , Serpinas/farmacologia , Catepsina L/metabolismo , Enzima de Conversão de Angiotensina 2 , Internalização do Vírus , Antivirais/farmacologia , Mutagênese , Proteínas Recombinantes , Serina , Serina Endopeptidases/genética
16.
J Cell Mol Med ; 26(16): 4613-4623, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35866203

RESUMO

Angiogenesis and increased permeability are essential pathological basis for the development of ovarian hyperstimulation syndrome (OHSS). Kallistatin (KS) is an endogenous anti-inflammatory and anti-angiogenic factor that participates in a variety of diseases, but its role in OHSS remains unknown. In this study, treating a human ovarian granulosa-like tumour cell line KGN and human primary granulosa cells (PGCs) with human chorionic gonadotropin (hCG) reduced the expression of KS, but increased the expression of VEGF. Furthermore, we found that KS could attenuate the protein level of VEGF in both KGN cells and human PGCs. More interestingly, we observed that exogenous supplementation of KS significantly inhibited a series of signs of OHSS in mice, including weight gain, ovarian enlargement, increased vascular permeability and up-regulation of VEGF expression. In addition, KS was proved to be safe on mice ovulation, progression of normal pregnancy and fetus development. Collectively, these findings demonstrated that KS treatment prevented OHSS, at least partially, through down-regulating VEGF expression. For the first time, these results highlight the potential preventive value of KS in OHSS.


Assuntos
Síndrome de Hiperestimulação Ovariana , Serpinas , Animais , Gonadotropina Coriônica/farmacologia , Feminino , Humanos , Camundongos , Síndrome de Hiperestimulação Ovariana/metabolismo , Síndrome de Hiperestimulação Ovariana/prevenção & controle , Gravidez , Serpinas/genética , Serpinas/metabolismo , Serpinas/farmacologia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
17.
J Cardiovasc Pharmacol ; 80(5): 672-678, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35881895

RESUMO

BACKGROUND: Modulation of the inflammatory response is a promising therapeutic strategy in acute myocardial infarction. The novel approach is based on the anti-inflammatory and cytoprotective properties mediated by the engagement of the low-density lipoprotein‒related protein 1 (LRP1) receptor. SERPIN peptide 16 (SP16) is a synthetic, selective LRP1 agonist. We herein present the results of a study with a single subcutaneous administration of SP16 in 10 patients with STEMI, to appraise its safety and tolerability and explore the effects on the acute inflammatory response, infarct size, and cardiac function. METHODS: Ten patients with ST-segment elevation myocardial infarction (STEMI) were enrolled within 12 hours of symptoms onset and 6 hours of percutaneous coronary intervention in a single-center, single-arm, open-label study of a single subcutaneous administration of SP16 (0.2 mg/kg). Serial clinical biomarkers and echocardiography data were collected up to 12 months. The data are presented separately for the treatment group and compared with historical controls from a placebo-treated arm in a recently completed clinical trial (N = 28) with similar enrollment criteria. RESULTS: All ten patients with STEMI received subcutaneous administration of SP16, 381 [272-478] minutes after percutaneous coronary intervention, without any treatment-related adverse events. The area under the curve for C-reactive protein was 133 [46-528] mg·d/L in the SP16-treated group versus 286 [141-581] mg·d/L in the historical placebo-treated group ( P = 0.161). The area under the curve for creatine kinase-myocardial band was 1432 [675-3089] ng·d/mL in the SP16-treated group versus 2367 [830-4750] ng·d/mL in the historical placebo-treated patients ( P = 0.428). Left ventricular ejection fraction was 46% [39-54] at baseline and 51% [46-58] at 1 year follow-up in SP16-treated patients (interval change 5% [-0.3% to +9%] P = 0.05) and 44% [38%-56%] at baseline and 53% [43%-59%] at 1 year follow-up in historical placebo-treated patients (interval change 3% [-5% to 10%], P = 0.305). CONCLUSION: A single subcutaneous administration of SP16, a synthetic targeted LRP1 agonist, was safe and well-tolerated in patients with STEMI. A trend toward reduction in the inflammatory response and infarct size with SP16 was noted; however, the sample size for this study was not based on formal statistical criteria. More extensive studies are planned to determine the clinical efficacy of SP16 in STEMI.NCT: NCT04225533.


Assuntos
Infarto do Miocárdio , Intervenção Coronária Percutânea , Infarto do Miocárdio com Supradesnível do Segmento ST , Serpinas , Humanos , Infarto do Miocárdio com Supradesnível do Segmento ST/diagnóstico por imagem , Infarto do Miocárdio com Supradesnível do Segmento ST/tratamento farmacológico , Volume Sistólico , Serpinas/farmacologia , Função Ventricular Esquerda , Lipoproteínas LDL/farmacologia , Intervenção Coronária Percutânea/efeitos adversos , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/etiologia , Inflamação/diagnóstico , Inflamação/tratamento farmacológico , Inflamação/etiologia , Resultado do Tratamento , Peptídeos/efeitos adversos
18.
Immunol Lett ; 248: 31-36, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35667453

RESUMO

M2 macrophages, the major component of tumor microenvironment, are recognized as important player in tumor progression. M2 macrophages mediate this effect by promoting tumor angiogenesis, tumor metastasis, and suppression of tumor immunity. Reprogramming of M2 macrophages can serve as a promising strategy in cancer immunotherapy. In this study, we constructed pigment epithelium-derived factor (PEDF) expressing vector and transfected MDA-MB-231 cells with this construct. Then, exosomes were isolated from transfected cells and M2 macrophages were incubated with isolated exosomes from transfected cell. The effect of isolated exosomes on macrophage polarization was examined by real-time PCR and ELISA. The results demonstrated reprogramming of M2 macrophages after incubation with isolated exosomes from PEDF transfected cells. M2-to-M1 repolarization of macrophages was confirmed by upregulation of CD80, IRF5, MCP1, and IL-1ß and repression of CD206, Arg, TGM2, and TGF-ß. Therefore, these findings revealed that introducing PEDF into exosomes by genetic manipulation of parent cells may be a potential approach for reprogramming of M2 macrophages in cancer.


Assuntos
Neoplasias da Mama , Exossomos , Serpinas , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proteínas do Olho , Feminino , Humanos , Macrófagos , Fatores de Crescimento Neural , Serpinas/genética , Serpinas/farmacologia , Microambiente Tumoral
19.
Am J Respir Crit Care Med ; 206(6): 712-729, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35549656

RESUMO

Rationale: Patients with chronic obstructive pulmonary disease (COPD) develop more severe coronavirus disease (COVID-19); however, it is unclear whether they are more susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and what mechanisms are responsible for severe disease. Objectives: To determine whether SARS-CoV-2 inoculated primary bronchial epithelial cells (pBECs) from patients with COPD support greater infection and elucidate the effects and mechanisms involved. Methods: We performed single-cell RNA sequencing analysis on differentiated pBECs from healthy subjects and patients with COPD 7 days after SARS-CoV-2 inoculation. We correlated changes with viral titers, proinflammatory responses, and IFN production. Measurements and Main Results: Single-cell RNA sequencing revealed that COPD pBECs had 24-fold greater infection than healthy cells, which was supported by plaque assays. Club/goblet and basal cells were the predominant populations infected and expressed mRNAs involved in viral replication. Proteases involved in SARS-CoV-2 entry/infection (TMPRSS2 and CTSB) were increased, and protease inhibitors (serpins) were downregulated more so in COPD. Inflammatory cytokines linked to COPD exacerbations and severe COVID-19 were increased, whereas IFN responses were blunted. Coexpression analysis revealed a prominent population of club/goblet cells with high type 1/2 IFN responses that were important drivers of immune responses to infection in both healthy and COPD pBECs. Therapeutic inhibition of proteases and inflammatory imbalances reduced viral titers and cytokine responses, particularly in COPD pBECs. Conclusions: COPD pBECs are more susceptible to SARS-CoV-2 infection because of increases in coreceptor expression and protease imbalances and have greater inflammatory responses. A prominent cluster of IFN-responsive club/goblet cells emerges during infection, which may be important drivers of immunity. Therapeutic interventions suppress SARS-CoV-2 replication and consequent inflammation.


Assuntos
COVID-19 , Doença Pulmonar Obstrutiva Crônica , Serpinas , Citocinas , Células Epiteliais , Humanos , Peptídeo Hidrolases , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , SARS-CoV-2 , Análise de Sequência de RNA , Serpinas/farmacologia , Serpinas/uso terapêutico
20.
Exp Cell Res ; 417(2): 113213, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35618012

RESUMO

PURPOSE: The impairment of the coronary microcirculatory barrier caused by acute myocardial infarction (AMI) is closely related to poor prognosis. Recently, pigment epithelial-derived factor (PEDF) has been proven to be a promising cardiovascular protective drug. In this study, we demonstrated the protective role of PEDF in endothelial tight junctions (TJs) and the vascular barrier in AMI. MATERIALS AND METHODS: 2, 3, 5-triphenyltetrazolium chloride (TTC), echocardiography and immunofluorescence staining were used to observe the size of infarcted myocardium area and cardiac function in myocardial tissue, and the distribution of TJ proteins in human coronary endothelial cells (HCAEC). Dextran leakage assay and Transwell were used to assess the extent of vascular and HCAEC leakage. Polymerase chain reaction (PCR) and Western blot were used to detect TJ-related mRNA and protein, and signaling pathway protein expression. RESULTS: PEDF effectively reduced the infarction area and improved cardiac function in AMI rats, and lowered the leakage in AMI rats' angiocarpy and oxygen-glucose deprivation (OGD)-treated HCAEC. Furthermore, PEDF upregulated the expression of TJ mRNA and proteins in vivo and vitro. Mechanistically, PEDF inhibited the expression of phosphorylated low-density lipoprotein receptor-related protein 6 (p-LRP6) and active ß-catenin under OGD, thus suppressing the activation of the classical Wnt pathway. CONCLUSIONS: These novel findings demonstrated that PEDF maintained the expression of TJ proteins and endothelial barrier integrity by inhibiting the classical Wnt pathway during AMI.


Assuntos
Infarto do Miocárdio , Serpinas , Animais , Células Endoteliais/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Microcirculação , Infarto do Miocárdio/tratamento farmacológico , Fatores de Crescimento Neural , RNA Mensageiro , Ratos , Serpinas/genética , Serpinas/metabolismo , Serpinas/farmacologia , Junções Íntimas/metabolismo , Via de Sinalização Wnt
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA